

5.5 Forced oscillation and resonance

Task

How can the oscillations of a spring pendulum be induced?

Start a spring pendulum oscillating with your hand and observe the effect. Measure the oscillation frequency with which the spring pendulum oscillates normally.

Use the space below for your own notes.		
	Г	

Material

Material from "TESS advanced Physics Set Mechanics 1, ME-1" (Order No. 15271-88)

Position No.	Material	Order No.	Quantity
1	Support base, variable	02001-00	1
2	Support rod, split in 2 rods, <i>l</i> = 600 mm	02035-00	1
3	Bosshead	02043-00	1
4	Holding pin	03949-00	1
5	Helical spring 3 N/m	02220-00	1

6	Set of precision weights, 1g50g, in case	44017-00	1
7	Stop watch, digital, 24h, 1/100 s and 1 s	24025-00	1
8	Fish line, in reel, <i>d</i> = 0.7 mm, 20 m	02089-00	10 cm
Additional Material			
	Scissors		1

Material required for the experiment

Setup

First screw the splitt support rod together (Fig. 1). Set up a stand with the support base (Fig. 2), put the support rod in the support base and tight it with the screw (Fig. 3).

Fig. 1

Fig. 3

Fix the bosshead to the support rod. Fix the holding pin in the bosshead and hang the helical spring in it (Fig. 4). Attach a 50 g mass piece from the weight set to the helical spring (Fig. 5).

Fig. 5

Action

- Deflect the spring pendulum downwards and let it oscillate at its natural oscillation frequency (Fig. 6).
- Start the stop watch when the pendulum is at its lower reversal point and measure the time required for 10 complete oscillations.
- Repeat this measurement twice and record the times in Table 1 on the Results page.

Fia. 6

- Take hold of the upper end of the helical spring (Fig. 7).
- Move your hand up and down with the spring pendulum very slowly (low excitation frequency). Observe the
 movement of the spring pendulum and record your observations in the Results page.
- Move your hand more rapidly than before (intermediate excitation frequency) and again observe the spring pendulum.
- Move your hand more rapidly (high excitation frequency, i.e. larger than the natural oscillation frequency) and again observe the spring pendulum.

Fig. 7

In order to disassemble the support base you should press the yellow buttons (Fig. 8).

Fig. 8

Results

Table 1

Measurement No.	t ₁₀ in s	Average t ₁₀ in s	T in s	f0 in Hz
1				
2				
3				

Result 1
Low excitation frequency (note your observations):
Low excitation frequency (note your observations).
Result 2
Intermediate excitation frequency (note your observations):
intermediate excitation requency (note your observations).
Result 3
High excitation frequency (note your observations):
Fredrickien
Evaluation
Question 1:
How is the amplitude affected by
How is the amplitude affected by
How is the amplitude affected by • low excitation frequency?
How is the amplitude affected by • low excitation frequency?
How is the amplitude affected by
How is the amplitude affected by • low excitation frequency?
How is the amplitude affected by • low excitation frequency?
How is the amplitude affected by • low excitation frequency?
How is the amplitude affected by • low excitation frequency?
How is the amplitude affected by • low excitation frequency?
How is the amplitude affected by • low excitation frequency? • intermediate excitation frequency?
How is the amplitude affected by • low excitation frequency?
How is the amplitude affected by • low excitation frequency? • intermediate excitation frequency?
How is the amplitude affected by • low excitation frequency? • intermediate excitation frequency?

Question 2: How can you explain the observed behavior?
Question 3:
From the values in Table 1 on the Results page calculate the average value for 10 oscillations and from it the time fo one oscillation, i.e. the oscillation period <i>T</i> . Record the results in Table 1.
Question 4: Use the oscillation period to calculate the pendulum's natural oscillation frequency of $f_0 = 1/T$ and record the result in Table 1.
Question 5: One uses the term "resonance" to describe the case in which the excitation frequency and the natural frequency of a object capable of oscillation agree. How is the resonance of a spring pendulum noticeable?
Question 6: What determines the oscillation frequency of a spring pendulum?
Question 7: Who is the "exciter" in this case?